Finite element solution of quasistationary nonlinear magnetic field
نویسنده
چکیده
The computation oj quasistalionary nonhnear two-dimensional magnetic jield leadslo thejollowingproblem There is given a bounded domain Q and an open nonempty set R <= Q We are looking jor the magnetic vectorpotentialu(xu x2, t) which satisjies 1) a certain nonhnear parabolic équation and_an initial condition in R , 2) a nonhnear elhptic équation in S ~ O. — R which is the stationary case of the above mentioned parabolic équation, 3) a boundary condition on ÔQ,, 4) u as well as its conormal denvative are continuous accross the common boundary oj R and S This problem is jormulated in two equivalent abstract ways There is constructed an approximate solution completely discretized in space by a gênerahzed Galerkin method {straight finite éléments are a special case) and by backward A stable dijjerentiaîion methods in time Existence and unique ness oj a weak solution isproved as well as a weak and strong convergence oj the approximate solution to this solution There are also denved error bounds jor the solution oj the two-dimensional nonhnear magnetic jield équations under the assumption that the exact solution is sujjiciently smooth Résume — Le calcul d un champ magnétique quasi stationnaire non lineaire en dimension deux conduit au problème suivant Etant donne un domaine borne Q et un ensemble ouvert non vide R <= O on cherche le potentiel vecteur magnétique u(xx x2i t) qui satisjait 1) une certaine équation parabolique non lineaire et une_conditwn initiale dans R , 2) une équation elliptique non lineaire dans S = Q — R qui est le cas stationnaire de l équation parabolique ci-dessus, 3) une condition aux limites sur dQ., 4) u de même que sa dérivée conotmale sont continus a travers lajrontiere commune a R et S Ce problème est énonce de deux jaçons abstraites dijjerentes On construit une solution approchée complètement discretisee en espace par une methode de Galerkin généralisée (les éléments finis droits sont un cas particulier) et par des methodes Astables de dérivation « arrière » en temps L existence et l unicité d une solution jaible sont établies ainsi que les convergences jaible et jor te de la solution approchée vers cette solution On obtient également des majorations d erreur pour la solution des équations du champ magnétique non lineaire a deux dimensions sous l hypothese de la solution exacte est sujjisamment reguliere (*) Received m February 1981 () Laborator Pocitacich Strojû, Tnda Obrancû Miru 21, 60200 Brno, Tchécoslovaquie R A I R O Analyse numenque/Numencal Analysis, 0399-0516/1982/161/$ 5 00 © Bordas Dunod
منابع مشابه
Significant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind
This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...
متن کاملAn Exact Solution for Vibration Analysis of Soft Ferromagnetic Rectangular Plates Under the Influence of Magnetic Field with Levy Type Boundary Conditions
In this paper vibration of ferromagnetic rectangular plates which are subjected to an inclined magnetic field is investigated based on classical plate theory and Maxwell equations. Levy type solution and Finite element method using Comsol software are used to obtain the frequency of the plate subjected to different boundary conditions, good agreements is obtained when computed results are compa...
متن کاملA finite element model to simulate magnetic field distribution and laboratory studies in wet low-intensity magnetic separator
Low-intensity magnetic separators are widely used in the research works and the industry. Advancement in the magnetic separation techniques has led to an expansion in the application of this method in different fields such as enrichment of magnetic mineral, wastewater treatment, and medicine transfer in the human body. In the mineral processing industry, the main application of wet magnetic sep...
متن کاملAnalytical and Numerical Investigation of Second Grade Magnetohydrodynamics Flow over a Permeable Stretching Sheet
In this paper, the steady laminar boundary layer flow of non-Newtonian second grade conducting fluid past a permeable stretching sheet, under the influence of a uniform magnetic field is studied. Three different methods are applied for solving the problem; numerical Finite Element Method (FEM), analytical Collocation Method (CM) and 4th order Runge-Kutta numerical method. The FlexPDE software p...
متن کاملA Linear Scheme for the Numerical Solution of Nonlinear Quasistationary Magnetic Fields
The computation of nonlinear quasistationary two-dimensional magnetic fields leads to the following problem. There exists a bounded domain Q and an open nonempty set R CÜ. We are looking for the magnetic vector potential u(xx, x2, t) which satisfies: (1) a certain nonlinear parabolic equation and an initial condition in R, (2) a nonlinear elliptic equation in S = SI — R, (3) a boundary conditon...
متن کاملComputer-aided Magnetic Field Analysis Using the Boundary Element Method
Efficient design of electromagnetic devices requires the analysis of electric and magnetic field distributions. To this end, the boundary element method (BEM) has been shown to be a powerful technique. This paper presents the use of BEM in computer-aided magnetic field analysis. The advantages of BEM over the finite element method (FEM) are stated. The recent introduction of BEM in a generalize...
متن کامل